Chromatic roots and limits of dense graphs
نویسندگان
چکیده
In this short note we observe that recent results of Abért and Hubai and of Csikvári and Frenkel about Benjamini–Schramm continuity of the holomorphic moments of the roots of the chromatic polynomial extend to the theory of dense graph sequences. We offer a number of problems and conjectures motivated by this observation.
منابع مشابه
Chromatic Roots are Dense in the Whole Complex Plane
I show that the zeros of the chromatic polynomials PG(q) for the generalized theta graphs Θ(s,p) are, taken together, dense in the whole complex plane with the possible exception of the disc |q − 1| < 1. The same holds for their dichromatic polynomials (alias Tutte polynomials, alias Potts-model partition functions) ZG(q, v) outside the disc |q + v| < |v|. An immediate corollary is that the chr...
متن کاملChromatic Harmonic Indices and Chromatic Harmonic Polynomials of Certain Graphs
In the main this paper introduces the concept of chromatic harmonic polynomials denoted, $H^chi(G,x)$ and chromatic harmonic indices denoted, $H^chi(G)$ of a graph $G$. The new concept is then applied to finding explicit formula for the minimum (maximum) chromatic harmonic polynomials and the minimum (maximum) chromatic harmonic index of certain graphs. It is also applied to split graphs and ce...
متن کاملOrbital Chromatic and Flow Roots
The chromatic polynomial PΓ(x) of a graph Γ is a polynomial whose value at the positive integer k is the number of proper kcolourings of Γ. If G is a group of automorphisms of Γ, then there is a polynomial OPΓ,G(x), whose value at the positive integer k is the number of orbits of G on proper k-colourings of Γ. It is known there are no real negative chromatic roots, but they are dense in [ 27 ,∞...
متن کاملChromatic roots as algebraic integers
A chromatic root is a zero of the chromatic polynomial of a graph. At a Newton Institute workshop on Combinatorics and Statistical Mechanics in 2008, two conjectures were proposed on the subject of which algebraic integers can be chromatic roots, known as the “α + n conjecture” and the “nα conjecture”. These say, respectively, that given any algebraic integer α there is a natural number n such ...
متن کاملThe locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 340 شماره
صفحات -
تاریخ انتشار 2017